Graph based manifold regularized deep neural networks for automatic speech recognition
نویسندگان
چکیده
Deep neural networks (DNNs) have been successfully applied to a wide variety of acoustic modeling tasks in recent years. These include the applications of DNNs either in a discriminative feature extraction or in a hybrid acoustic modeling scenario. Despite the rapid progress in this area, a number of challenges remain in training DNNs. This paper presents an effective way of training DNNs using a manifold learning based regularization framework. In this framework, the parameters of the network are optimized to preserve underlying manifold based relationships between speech feature vectors while minimizing a measure of loss between network outputs and targets. This is achieved by incorporating manifold based locality constraints in the objective criterion of DNNs. Empirical evidence is provided to demonstrate that training a network with manifold constraints preserves structural compactness in the hidden layers of the network. Manifold regularization is applied to train bottleneck DNNs for feature extraction in hidden Markov model (HMM) based speech recognition. The experiments in this work are conducted on the Aurora2 spoken digits and the Aurora-4 read news large vocabulary continuous speech recognition tasks. The performance is measured in terms of word error rate (WER) on these tasks. It is shown that the manifold regularized DNNs result in up to 37% reduction in WER relative to standard DNNs.
منابع مشابه
Manifold regularized deep neural networks
Deep neural networks (DNNs) have been successfully applied to a variety of automatic speech recognition (ASR) tasks, both in discriminative feature extraction and hybrid acoustic modeling scenarios. The development of improved loss functions and regularization approaches have resulted in consistent reductions in ASR word error rates (WERs). This paper presents a manifold learning based regulari...
متن کاملGraph regularized Restricted Boltzmann Machine.
The restricted Boltzmann machine (RBM) has received an increasing amount of interest in recent years. It determines good mapping weights that capture useful latent features in an unsupervised manner. The RBM and its generalizations have been successfully applied to a variety of image classification and speech recognition tasks. However, most of the existing RBM-based models disregard the preser...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1606.05925 شماره
صفحات -
تاریخ انتشار 2016